
Smart Crosswalk Dynamic Lighting System 1

ECE 4512 & ECE 4532: Design I March 25, 2015

3. APPROACH

SCDLS is designed to aid pedestrians who are using crosswalks by actively lighting the crosswalk and

making it visible to approaching vehicles. By dynamically changing the status of the crosswalk, this system

has the capability to save numerous lives by gaining the attention of approaching motorists with the use of

LEDs.

3.1. System Overview

SCDLS consists of several subsystems in order to actively track pedestrians as they enter and exit the

crosswalk and dynamically trigger the LED lighting to alert oncoming traffic. The team has gone to great

lengths to keep power consumption to a minimum and ensure that the system as a whole will stay functional

for an average of 5 years.

Below, Figure 3.1 shows an overview of the various subsystems that comprise a SCDLS unit. The devices

are powered by solar power and are intelligently controlled via an on-board microcontroller in order to

further conserve power.

Figure 3.1 – SCDLS System Overview

Smart Crosswalk Dynamic Lighting System 2

ECE 4512 & ECE 4532: Design I March 25, 2015

3.2. Hardware

SCDLS necessitates a self-contained, sustainable, power architecture for each module. This architecture is

displayed below in Figure 3.2. Each of these components was selected based on their effectiveness and

compatibility with other components in the system.

Figure 3.2 – Power Architecture for SCDLS Module

The team estimated power consumption based on data gathered from the individual components in the

system to determine what amount of power would be necessary. The worst-case calculations for a node and

a hub are located below. The calculations assume that the module is located in Atlanta, Georgia. This

assumption was made because SCDLS is not capable of withstanding an impact from a snowplow or other

large machinery used for clearing snow form a road. The modules will only illuminate at night because it

is not feasible for the LEDs to compete with the light from the sun during the daytime, while still relying

solely on solar power. Additionally, the duty cycles are team-estimated values that will depend highly on

the traffic of a specific crosswalk. For ease of power calculation, the primary voltage is 3.1V because it is

compatible with all components, which will be explained further in this document.

3.2.1. Node Energy Requirement Calculations

Energy Required=(24 Hours-Hours of Sunlight)×(Average Active Power Consumption)

Average Active Power Consumption

=
NRF Avg Power

(
NRF Duty Cycle

100%
)

+
Microcontroller Avg Power

(
Microcontroller Duty Cycle

100%
)

+
LED Driver Avg Power

(
LED Driver Avg Power

100%
)

Average Active Power Consumption=
(13mA)(3.1V)

(
10%

100%
)

+
(4.3mA)(3.1V)

(
5%

100%
)

+
(10mA)(3.1V)

(
5%

10%
)

=9.7322mW

Smart Crosswalk Dynamic Lighting System 3

ECE 4512 & ECE 4532: Design I March 25, 2015

Energy Required=(24 Hours-9.92 Hours)×6.24mW=494 J

Day
 [1].

3.2.2. Hub Energy Requirement Calculations

Energy Required=(24 Hours-Hours of Sunlight)×(Average Active Power Consumption)

Average Active Power Consumption Formula

=
NRF Avg Power

(
NRF Duty Cycle

100%
)

+
WiFi Avg Power

(
WiFi Duty Cycle

100%
)

+
Microcontroller Avg Power

(
Microcontroller Duty Cycle

100%
)

+

PIR Sensor Avg Power

(
PIR Sensor Cycle

100%
)

+
LED Driver Avg Power

(
LED Driver Duty Cycle

100%
)

+
Magnometer Avg Power

(
Magnometer Duty Cycle

100%
)

Average Active Power Consumption

=
(13mA)(3.1V)

(
100%
100%

)
+

(197mA)(3.1V)

(
0.35%
100%

)
+

(4.3mA)(3.1V)

(
100%
100%

)
+

(0.17mA)(3.1V)

(
20%

100%
)

+
(10mA)(3.1V)

(
20%

100%
)

+
(0.1mA)(3.1V)

(
20%

100%
)

Energy Necessary=(24 Hours-9.92 Hours)*6.24mW=1327
J

Day
 [1].

Multiple methods of power generation were considered before solar power was selected. Comparisons of

the options can be seen in Table 3.2.2. Based on this analysis, the solar panel was a standout choice for

powering SCDLS modules. Solar panels are also used by other manufacturers for similar applications.

Table 3.2.2 - Possible Power sources for SCDLS Module [2]

Generation

Technology Solar Thermoelectric Acoustic Piezoelectric RF

Power output 15mW/cc 40μW/cc 960nW/cc 330μW/cc 116μW

Reliability Medium High Low Low Medium

Difficulty

Implementation Medium Low Low Low Very Low

Smart Crosswalk Dynamic Lighting System 4

ECE 4512 & ECE 4532: Design I March 25, 2015

Based on the power analyses that are outlined above, it was clear that solar power was the only feasible

option for supplying power to this application. Therefore, multiple solar panels were compared. In order to

account for any unforeseen issues, and to have a functional prototype before completing all necessary power

optimizations, a safety factor above 4 was desired. The two primary requirements for selecting a solar panel

was that it meets the desired power output with a safety factor and is a highly durable panel. For that reason,

a 5V, 250mA peak, epoxy-covered solar panel was chosen. Figure 1.1.X shows the power output from the

solar panel during a sunny February day in Starkville, Mississippi.

Figure 3.2.2a – Solar Panel Power Output

When integrated using the MATLAB trapz function, this data yields a single day power output of

6614
J

Day
, which gives our team a safety factor of 4.98 for the hub and a safety factor of 13.4 for the node

on that particular day. While this is not representative of the worst possible day, the team plans to use a

substantially sized battery to allow the system to operate for extended periods without sunlight. When

evaluating different battery options, the primary evaluation factors were the use of protected cells, energy

density, packaging efficiency, and temperature requirements. Protected cells are standard battery cells with

an added current interrupt device (CID) that will disconnect the battery terminals from the battery in the

event of an overcharge, undercharge, or overcurrent. This is necessary for product safety and reliability.

Based on figure 3.2.2b it was clear that the Li-Ion were the most energy-dense batteries and were capable

of meeting the temperature requirements of -10°C to 50°C [4]. A few packages were considered, but the

most efficient package for our system is a rectangular prism due to the design of the casing. As such, a

3500mAh lithium-ion Samsung Galaxy Note 2 battery was selected because of its flat, rectangular shape.

Additionally, the Galaxy Note 2 battery has built-in cell protection and is manufactured by reputable and

experienced company [3, 4].

Smart Crosswalk Dynamic Lighting System 5

ECE 4512 & ECE 4532: Design I March 25, 2015

Figure 3.2.2b – Energy Density of Different Battery Technologies [5]

The team wanted a fully charged battery to be able to power a module for 30 days without receiving any

energy from the solar panel. Assuming the voltage regulation circuit is 90% efficient, the amount of time

the battery can power a module is as follows:

Hub Battery Capacity=
(90%)(3500mAH)(3.7V)(3.6 J

mWH
)

(1328 J
Day

)
=32 Days

In order to transfer the energy from the solar panel to the battery, an energy conversion circuit is necessary.

Our requirements for this application include a minimum efficiency of 90% and compatibility with the

previously selected solar panel. Some possible solutions to this problem were integrated circuits, a custom

made circuit, or a premade solar panel charger circuit board by Adafruit. After analyzing the different

options, it was determined that the Adafruit board was not sufficient and was larger than necessary. The

custom-made circuit designs, with discrete components, soon exceeded the complexity that the team felt

comfortable with, at no benefit. As a result, integrated circuits were the front-runner. Multiple ICs were

evaluated, but the ST Microelectronics SPV1040 and L6924D shined ahead of the pack due to the high

quality documentation and a reference design that was closely applicable to our design. This reference

design also came with test data indicating its performance in applications similar to SCDLS’s [6].

Once energy is stored in the battery, it needs to be converted to a consistent voltage that is compatible with

the microcontroller and all other peripherals. 3.1V was chosen because it is well within the input limits of

all of the components chosen. The team set several constraints on the conversion of energy from the battery

to power the other components: compatibility with input and output voltages, sufficient current handling

capacity, and 85% efficiency under typical load conditions. Possible solutions meeting these requirements

included linear regulators, low dropout regulators, and switching regulators, but after some analysis it was

soon apparent that only a switching regulator would meet the efficiency requirement. In order to find an

integrated circuit with these requirements a parametric search was performed that only displayed

Smart Crosswalk Dynamic Lighting System 6

ECE 4512 & ECE 4532: Design I March 25, 2015

components meeting these requirements and the lowest cost component with quality documentation was

chosen. This component is the TPS62240 switching regulator from Texas Instruments. The switching

regulator design has been implemented following the reference designs, but if there are any voltage

regulations or ripple issues, those will be resolved by the addition of a smoothing capacitor.

3.2.3. Pedestrian Detection

One of the major advantages of SCDLS over competitors is the ability to detect pedestrians accurately

without user interaction. In order to achieve this, the team considered a number of various sensors before

choosing passive infrared (PIR) technology as the sensor type to continue forward with. Other

considerations included ultrasonic sensors and infrared (IR) distance sensors. There were many

considerations associated with each sensor type. Before expanding on the background theory of each sensor,

Table 3.1 below gives an overview of the major characteristics of each of the sensor types previously

mentioned.

Table 3.2.3 – Considerations of Different Sensor Types

Technology Maximum

Distance

Power

consumption

Weather

Considerations

Field of

view

PIR 16 feet 30 µA Easily weatherproofed 22° conical

Ultrasonic 6.5 feet 15 mA Easily weatherproofed 10° conical

IR 6.2 feet 40 mA Susceptible to Humidity 2° conical

Based on the information above, the team decided to eliminate IR sensors from further consideration based

on their extremely small field of view. The small field of view would mean that an array of IR sensors

would be needed in order to accurately detect when a pedestrian enters or exits the crosswalk. Also, the IR

sensors do not fare well in standard weather conditions. The PIR and ultrasonic sensors accomplish similar

tasks in different ways. To start, PIR sensors fundamentally work by detecting changes in amounts of

infrared radiation produced by objects. Usually the module consists of a comparator and a Fresnel lens. The

infrared radiation values change significantly as individuals move in front of the module. Through the use

of the Fresnel lens, these changes can be compared to the sensor’s previous value to see if movement has

been detected.

In comparison, ultrasonic sensors work by detecting sound waves. The module we were considering was

unique in that it basically acts as both a speaker and a microphone. The sensor first emits a precise high

frequency sound. Then, the sensor listens for a response back to the emitted sound and uses the time for the

response to occur and determine the distance from the object.

Both modules had the following pros and cons. The ultrasonic sensors could give us distance data. However,

data was inherently noisy and would need to be filtered using fairly advanced techniques in order to obtain

usable data. In comparison, the PIRs were one-third of the size but only recorded if an object had passed

by. The team chose to use PIR sensors because they are more accurate than ultrasonic sensors and produce

data that does not require as much filtering. Also, the detection threshold for the PIR sensors is greater than

the ultrasonic sensors and, thus, false positives would be reduced. Finally, the PIR sensors are more energy

efficient than the ultrasonic sensors.

Smart Crosswalk Dynamic Lighting System 7

ECE 4512 & ECE 4532: Design I March 25, 2015

The normal width of a crosswalk is approximately 6 feet, however, in larger cities, this is often times

doubled. This presented the unique challenge of finding sensors that could work at distances of up to 14

feet, while still being small enough to physically fit in the modules. The PIR is the only sensor that met this

requirement. In addition, with a standby current of 1µA, they were the obvious choice for our power and

life-of-use constraints.

3.2.4. Vehicle Detection

Although PIR sensors work very well for pedestrian detection, our tests thus far have shown that they are

not very effective at detecting vehicles. Because of the potentially high speeds of vehicles and their relative

direction to the crosswalk, the PIRs might not accurately detect vehicular traffic. To counter this, the team

decided to add another component to the hubs, a magnetometer. Fundamentally, a magnetometer works by

detecting changes in the magnetic field around itself. Because all vehicles contain large quantities of metal,

when a vehicle crosses a magnetometer, it detects a dramatic change in the magnetic field around it. The

microcontroller can use an algorithm to determine when a car passes over the hub using the data produced

by the magnetometer.

3.2.5. Light Emitting Diodes

A number of light emitting diodes (LEDs) were considered before the team decided to use common anode

red, green, and blue (RGB) LEDs. In conjunction with the team’s constant current LED driver, these

modules will allow the team to display alerts to drivers in an array of colors at a varying brightness. This

was an important consideration in preventing inhibitions in the driver’s field of vision with exceedingly

bright light. The team chose not to use a single color LED because different states and countries have

different laws on what colors are permitted for use on roadways. By using an RGB LED, these colors can

be set and changed after installation to choose the best color light for the setting.

3.2.6. LED Drivers

The two options for driving the LEDs on the modules are either using the GPIO pins on the microcontroller

or using an LED driver IC. Using the GPIO pins is unsuited for our application because it would require

placing current limiting resistors in series with the pins of the LEDs. The current limiting resistors would

consume power unnecessarily, which is undesirable since one of the system’s main constraints is power

consumption. Constant current LED drivers contain hardware to regulate the current through each LED. As

such, constant current LED drivers do not require the use of current limiting resistors, and they also ensure

that all of the LEDs receive the same amount of current while preventing the LEDs from drawing more

than their maximum rated current. Therefore, the team decided to use constant current LED drivers.

The characteristics used to evaluate the different LED drivers were the following: minimum supply voltage,

communication bus, number of outputs, package, dimming capabilities, constant current capabilities, and

cost. Originally, the chosen minimum supply voltage was 2.7V, however, later in the design, the minimum

supply voltage was increased 3.1V due to factors that will be discussed later. The communication bus

chosen was I2C due to the ease of use using the Arduino Wire library and the team’s familiarity with it.

Since each module will use four RGB LEDs, the minimum number of outputs required on the LED driver

is twelve because each RGB LED has three cathodes that must be connected to the driver. However, since

I2C supports multiple devices on the same bus, multiple LED drivers could be used to bring the total number

of outputs to twelve, if the drivers have enough addressing pins to support the required number of drivers

on the I2C bus. The preferred package for the LED driver is shrink small outline package (SSOP), or an

SSOP variant, due to the packages’ small sizes and ease of soldering. However, an LED driver in a quad-

flat no-leads (QFN) package is acceptable even though it is harder to solder than SSOP. The LED driver

needs dimming capabilities in order to reduce power consumption by the LEDs and to allow control of the

Smart Crosswalk Dynamic Lighting System 8

ECE 4512 & ECE 4532: Design I March 25, 2015

brightness to prevent the unnecessary distraction of drivers or pedestrians. As discussed previously, the

LED driver needs constant current capabilities. Finally, cost was considered as a final discriminating factor.

The following is a table showing the characteristics of four different LED drivers considered for use.

Table 3.2.6 – Comparison of LED Drivers

Manufacturer Part Number
Minimum

Supply

Voltage

Communic

ation Bus

Number

of

Outputs
Package

Dimming

Capabilit

ies

Constant

Current
Cost

(USD)

Maxim

Integrated
MAX8647 2.7V I2C 6

Thin

QFN
PWM Yes $5.46

NXP

Semiconductors
PCA9532 2.7V I2C 16

TSSOP,

HVQF

N
PWM No $2.65

ISSI IS31FL3218 2.7V I2C 18
SOP,

QFN
PWM Yes -

Texas

Instruments
TLC59116 3.0V I2C 16

TSSOP,

VQFN
PWM Yes $3.15

The Maxim LED driver was the initial candidate for use in the system. However, the Maxim LED driver

has a hardcoded I2C address, and, thus, only one LED driver can be used on the I2C bus. Also, the Maxim

LED driver was one of the most expensive drivers found. The NXP LED driver would be suitable for the

system if it were constant current. Since the NXP LED driver is not constant current, it was not chosen for

use in the system. The ISSI LED driver met all of the requirements for the system. However, Digi-Key does

not sell the ISSI LED driver, and Mouser only sells the ISSI LED driver in multiples of 550 units. The team

was unsuccessful at finding a supplier for the ISSI LED driver. Finding LED drivers that met the 2.7V

minimum supply voltage requirement proved to be extremely difficult, so the team decided to increase the

supply voltage of the system to 3.1V. Given the increased supply voltage, the Texas Instruments LED driver

was chosen because it met or exceeded all of the requirements for the LED driver while being significantly

less expensive than the other components.

3.3. Software

3.3.1. Implementation Details

The SCDLS software stack is written in C++. This choice was made for a few reasons. First, much of the

Arduino libraries are written in C++. Using C++ allows us to utilize these libraries with little to no

additional effort. Because we utilize these libraries, our code’s interaction with basic hardware features of

the CPU is greatly simplified. C++ also has modern language features that make designing reusable

software very easy. Of course, many of these features, such as run-time type information, are too resource-

intensive to be used on a microcontroller, so we carefully considered each feature of the language to use.

Done correctly, C++ is a great system to work in.

All the subsystems in our firmware are implemented as C++ classes. This approach provides encapsulation

Smart Crosswalk Dynamic Lighting System 9

ECE 4512 & ECE 4532: Design I March 25, 2015

and facilitates asynchronous algorithms, which are crucial to maintaining the responsiveness of the system.

The only downside to this approach is that there is a small amount of runtime overhead because instance

pointers must be passed to all member functions consuming a hardware register. However, this would have

to be done anyway for many of the subsystems because they maintain state between scheduler events.

3.3.2. Subsystems

Our project incorporates various software subsystems to meet our constraints and to provide a maintainable

codebase. These subsystems include the scheduler, the device drivers, and the command layer.

3.3.3. Scheduler

The scheduler is responsible for keeping the system’s time and executing events at the appropriate point.

Other software modules communicate with the scheduler to schedule events. The scheduler is also

ultimately responsible for managing the power saving modes on the microcontroller (when this

functionality is implemented). The scheduler will awaken the CPU only when tasks are scheduled to be

executed, leaving the device in a low-power state at all other times.

Modules wishing to use the scheduler are required to inherit from a C++ abstract base class, which allows

the scheduler to call their callback function at the appropriate time without knowing exactly what system it

is invoking. Although there is a small runtime cost associated with virtual function calls, it is quite small,

even on embedded platforms such as ours. Furthermore, much of the Arduino stack already makes

extensive use of virtual calls. We feel that any small runtime cost is easily offset by the ease of

implementation. The primary alternative to the use of virtual functions is passing pointers to raw functions;

however, because most modules maintain state, the scheduler would need to pass them an instance pointer

anyway. Furthermore, code involving pointers to functions is generally less readable and maintainable than

code that uses proper inheritance.

The scheduler relies on cooperative multitasking between modules and does not make any strong real-time

guarantees. Therefore, it is the responsibility of the subsystems' authors to ensure that the subsystems do

not block the CPU while waiting for external events. Although it would be advantageous to have a real-

time operating system (RTOS) from a responsiveness perspective, the very limited system resources of the

microcontroller prohibit an advanced task-switching framework. Therefore, the cooperative scheduler

provides a good compromise between a full RTOS and no multitasking framework whatsoever.

3.3.4. Device Drivers

The device drivers are the subsystems, which communicate directly with the hardware. These modules are

responsible for handling input from sensors, sending data over the wireless links, and turning on and off

the lights. These systems forward incoming events to the command layer. The implementation details for

most of these driver systems are fairly straightforward.

3.3.5. Network Driver Subsystem

In contrast to most of our device drivers, the networking subsystem is fairly complex. It provides several

features beyond those provided by the nRF24L01+ radio hardware. The radio uses a simple data-link

protocol called ShockBurst. A ShockBurst frame consists of a five-byte address, a 32-byte payload, and a

CRC16 checksum. The radio can be configured to receive frames addressed to up to five addresses. Our

system uses the first four bytes of the address as a “network ID.” Each crosswalk system will have a unique

network ID assigned by the system administrators at installation time. This allows multiple crosswalks to

be installed in close proximity without interfering with each other's communications. The last byte of the

Smart Crosswalk Dynamic Lighting System 10

ECE 4512 & ECE 4532: Design I March 25, 2015

address is the node ID; each module assigns itself a random ID when it boots. ID collisions are handled in

the command protocol, which will be discussed later.

Figure 3.3.5a – Network Subsystem Large Frame Header

Our network subsystem is a combined network and transport layer that is implemented on top of the radio's

data link layer. It allows nodes to send messages to any other node, as discussed above. It also allows nodes

to send packets of arbitrary size, not limited to the 32-byte ShockBurst frame size. Large packets, which

do not fit into a single frame, are broken into pieces and sent sequentially. The receiving node(s) reassemble

the packets upon delivery. This model incurs an overhead of one byte on all frames sent and an additional

overhead of three bytes per frame on large packets. This overhead consists of frame information, such as

the packet ID, the relative frame number, and the total number of bytes in the packet. Because the nodes

could potentially be transmitting relatively large data, such as sending stored traffic statistics to the master

node, this overhead is rather small and is acceptable.

Figure 3.3.5b – Large Payload Reassembly

The last main feature provided by the networking subsystem is broadcast packets. In addition to sending

packets to other individual modules in the network, modules can broadcast a packet that will be received

and processed by all nodes. This functionality is used by the hubs to broadcast sensor data, which is received

and interpreted simultaneously by all nodes. The networking subsystem uses the multiple-address

functionality of the radio IC to not only receive packets addressed to its specific node ID, but also packets

addressed to a reserved “broadcast ID” (currently 0x00). This design eliminates the need for each hub to

keep track of every other node in the network and manually send copies of sensor data to each of them,

thereby reducing power consumption and network congestion.

3.3.6. Command Layer

The command layer is responsible for taking inputs from the sensors and performing actions appropriately.

The primary actions performed by the command layer are dispatching commands to other subsystems; due

to the asynchronous nature of our software stack, little CPU time is spent in the command layer itself.

Smart Crosswalk Dynamic Lighting System 11

ECE 4512 & ECE 4532: Design I March 25, 2015

Because no sensor is perfect, there will be some false readings. One of the functions of the command layer

is to filter out sensor noise and to only turn on the lights when it is highly probable that there are pedestrians

present. There are several options for filtering algorithms for the PIR sensors we chose. The algorithm we

are currently using is a simple threshold detection algorithm where two sensors must be triggered within a

preset number of seconds, currently five seconds. This algorithm is simple but should prevent occasional

false positives caused by random errors.

The following flowchart gives an overview of the actions performed by the command layer. Note that only

the hubs have onboard sensors; therefore, the shaded grey section of the flowchart is only implemented on

hubs.

Figure 3.3.6 – Command Layer Logic Flowchart

The modules spend most of their time in a power saving “idle” mode. Because all the subsystems are

activated by external events or on a timed basis, the command layer does not have to spend most of its CPU

time in a busy-waiting loop (that is, executing no-operation instructions while waiting for an event). When

an event occurs, the subsystem’s handler runs. Then, if necessary, the handler invokes the appropriate

routine in the command layer. The command layer will handle the sensor event and dispatch a command

to the light driver, if necessary. It will also schedule a lights-off event so that the CPU does not busy-wait

for the lights to turn off. The scheduler will then wake the processor and return control to the command

layer at the appropriate time.

Start

Idle

Switch to power saving mode

Setup

Reset all sensors

Initialize network

Establish node connections

Sensor Handling

Count recent sensor events

Broadcast sensor event

On sensor

interrupt

Insufficient

events

Remote Sensor Handling

Count recent sensor events

Disable Lights

Insufficient

events
On light

timeout

Enable Lights

Set timer to disable lights

Sufficient

events

On broadcast

sensor event

Smart Crosswalk Dynamic Lighting System 12

ECE 4512 & ECE 4532: Design I March 25, 2015

3.3.7. Use Cases

Using the above high-level flowchart, several user interactions are possible. Note that, in each case, the

goal of the system is to provide as much lighting to the crosswalk as possible.

The ideal “sunny day” user interaction is as follows.

Figure 3.3.7a – Sunny Day User Interaction

This is a very simple ideal interaction; this is by design. SCDLS should work with no interaction from its

primary users. Of course, this diagram is from the perspective of the user; from the standpoint of the system,

this interaction gets somewhat more complicated.

Figure 3.3.7b – Sunny Day System Interation

A worse-case scenario is when there is interference on the 2.4GHz spectrum. In this scenario, not all nodes

may receive the broadcasts. Even though these messages may not be delivered, the nodes that do receive

the message turn on their lights, providing some protection to the pedestrian. Although this may look

unusual to users, we decided that this degraded operation provides some protection to pedestrians and is

better than total system failure. The following diagram shows the events for this degraded operation:

Smart Crosswalk Dynamic Lighting System 13

ECE 4512 & ECE 4532: Design I March 25, 2015

Figure 3.3.7c – Rainy Day User Interaction

Smart Crosswalk Dynamic Lighting System 14

ECE 4512 & ECE 4532: Design I March 25, 2015

WORKS CITED

[1] Washington Post, "Winter begins today: Five questions and answers about the solstice," 21

December 2014. [Online]. Available: http://www.washingtonpost.com/blogs/capital-weather-

gang/wp/2014/12/21/winter-begins-today-five-questions-and-answers-about-the-solstice/. [Accessed

25 March 2015].

[2] National Electronics Manufacturing Center of Excellence, "Energy Harvesting from Wireless Sensor

Networks," January 2011. [Online]. Available:

http://www.empf.org/empfasis/2011/January11/energy.html. [Accessed 25 March 2015].

[3] "The Anatomy of a Protected LiIon Battery," [Online]. Available: http://www.lygte-

info.dk/info/battery%20protection%20UK.html. [Accessed 25 March 2015].

[4] I. Buchmann, "Charging at High and Low Temperatures," [Online]. Available:

http://batteryuniversity.com/learn/article/charging_at_high_and_low_temperatures. [Accessed 25

March 2015].

[5] A. Composites, "Nickel Zinc (NiZn) batteries are a great COST-EFFECTIVE choice for many

applications.," [Online]. Available: http://www.automotivecomposites.com/batteries.htm. [Accessed

25 March 2015].

[6] ST Microelectronics, "Application Note: Lithium-ion solar battery charger," [Online]. Available:

http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/application_note/DM00048561.pdf. [Accessed 25

March 2015].

